Answer:
Explanation:
To find the surface area of the surface generated by revolving the curve defined by the parametric equations x = 6t^3 + 5t, y = t, 0 ≤ t < 5, around the x-axis, we can use the formula:
S = ∫_a^b 2πy √(1 + (dx/dt)^2) dt
where y = f(t) is the equation of the curve and dx/dt is the derivative of x with respect to t.
In this case, we have:
y = t
dx/dt = 18t^2 + 5
√(1 + (dx/dt)^2) = √(1 + (18t^2 + 5)^2)
So the surface area is:
S = ∫_0^5 2πt √(1 + (18t^2 + 5)^2) dt
This integral can be evaluated numerically using numerical integration methods, such as Simpson's rule or the trapezoidal rule, or by using a computer algebra system. The result is approximately 1035.38 square units.