135k views
4 votes
Let B = {b, b2.b3} be a basis for vector space V. Let T:V+ V be a linear transformation with the following properties. T(61) = 7b, -3b2. T(62) = b; -5b2. T(63) = -2b2 Find [T). the matrix for T relative to B. ITIB

User Towana
by
8.3k points

1 Answer

4 votes

Answer: since [B]^-1[B] = I.

Explanation:

To find the matrix for T relative to B, we need to find the coordinates of the vectors T(b), T(b^2), and T(b^3) with respect to the basis B.

We have:

T(b) = 6T(b^2) + 1T(b^3) = b, -5b^2

T(b^2) = 1T(b^2) + 0T(b^3) = 7b, -3b^2

T(b^3) = 0T(b^2) - 2T(b^3) = 0, 4b^2

To find the matrix [T], we write the coordinates of T(b), T(b^2), and T(b^3) as columns:

[T] = [b, 7b, 0; -5b^2, -3b^2, 4b^2]

To check this matrix, we can apply it to the basis vectors and see if we get the same coordinates as the vectors T(b), T(b^2), and T(b^3):

[T][b] = [b, 7b, 0][1; 0; 0] = [b; -5b^2]

[T][b^2] = [b, 7b, 0][0; 1; 0] = [7b; -3b^2]

[T][b^3] = [b, 7b, 0][0; 0; 1] = [0; 4b^2]

These are the same as the coordinates we found for T(b), T(b^2), and T(b^3), so our matrix [T] is correct.

To find ITIB, we first need to find the inverse of the matrix [B] whose columns are the basis vectors b, b^2, and b^3. We can do this by row reducing the augmented matrix [B | I]:

[1 0 0 | 1 0 0]

[0 1 0 | 0 1 0]

[0 0 1 | 0 0 1]

So [B] is already in reduced row echelon form, and its inverse is just I:

[B]^-1 = [1 0 0; 0 1 0; 0 0 1]

Therefore,

ITIB = [B]^-1[T][B] = [T]

since [B]^-1[B] = I.

User Tricksless
by
7.9k points

Related questions

asked Oct 24, 2020 166k views
Yusuf Ganiyu asked Oct 24, 2020
by Yusuf Ganiyu
7.4k points
2 answers
4 votes
166k views
asked Jun 15, 2020 197k views
Joe Frank asked Jun 15, 2020
by Joe Frank
8.2k points
1 answer
1 vote
197k views