Answer:
2
Explanation:
The region bounded above by the surface z=4 cos xsin y and below by the rectangle R:
We can use a double integral to find the volume of the region:
V = ∫∫R 4cos(x)sin(y) dA
where R is the rectangle defined by:
0 ≤ x ≤ π/2
0 ≤ y ≤ π/2
Then we can evaluate the integral as follows:
V = ∫∫R 4cos(x)sin(y) dA
= ∫0^(π/2) ∫0^(π/2) 4cos(x)sin(y) dxdy
= ∫0^(π/2) [4sin(x)](0 to π/2) dy
= ∫0^(π/2) 4sin(π/2) dy
= 4(sin(π/2))(π/2 - 0)
= 4(1)(π/2)
= 2π
Therefore, the volume of the region bounded above by the surface z=4 cos xsin y and below by the rectangle R is 2π.