44.9k views
18 votes
Suppose u and v are functions of x that are differentiable at x=0 and that u(0)= 7,u'(0)=-5,v(0)= -1, v'(0)= -4.

Find the values of the following derivatives at x=0.

1 Answer

10 votes

This question is incomplete, the complete question is;

Suppose u and v are functions of x that are differentiable at x=0

and that { u(0) = 7, u'(0) = -5 } { v(0)= -1, v'(0) = -4 }

Find the values of the following derivatives at x = 0.

a)
(d)/(dx)( uv )

b)
(d)/(dx)(
(u)/(v) )

c)
(d)/(dx)(
(v)/(u) )

Answer:

a)
(d)/(dx)( uv ) = -23

b)
(d)/(dx)(
(u)/(v) ) = 33

c)
(d)/(dx)(
(v)/(u) ) = -32/49 or - 0.6531

Explanation:

Given that;

{ u(0) = 7, u'(0) = -5 } { v(0)= -1, v'(0) = -4 }

a)


(d)/(dx)( uv )

we differentiate


(d)/(dx)( uv ) = uv' + vu'

at x = (0), we substitute our values


(d)/(dx)( uv ) = ( 7 × -4 ) + ( -1 × -5)


(d)/(dx)( uv ) = -28 + 5


(d)/(dx)( uv ) = -23

b)


(d)/(dx)(
(u)/(v) )

we differentiate


(d)/(dx)(
(u)/(v) ) = ( vu' - uv' ) / v²

at x=0, we substitute our values


(d)/(dx)(
(u)/(v) ) = ( (-1 × -5) - (7 × -4 ) ) / (-1)²


(d)/(dx)(
(u)/(v) ) = (( 5 - ( -28 )) / 1


(d)/(dx)(
(u)/(v) ) = 33 / 1


(d)/(dx)(
(u)/(v) ) = 33

c)
(d)/(dx)(
(v)/(u) )

we differentiate


(d)/(dx)(
(v)/(u) ) = ( uv' - vu' ) / u²

at x=0, we substitute our values


(d)/(dx)(
(v)/(u) ) = ( (7 × -4) - (-1 × -4) ) / (7)²


(d)/(dx)(
(v)/(u) ) = ( -28 - ( 4 ) ) / 49


(d)/(dx)(
(v)/(u) ) = ( -28 - 4 ) /49


(d)/(dx)(
(v)/(u) ) = -32 / 49


(d)/(dx)(
(v)/(u) ) = -32/49 or - 0.6531

User Jimmy Ilenloa
by
5.5k points