190k views
2 votes
What is the area of a sector when 0=pi/2 radians and r=8/3

What is the area of a sector when 0=pi/2 radians and r=8/3-example-1

1 Answer

4 votes


\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta r^2}{2} ~~ \begin{cases} r=radius\\ \theta =\stackrel{radians}{angle}\\[-0.5em] \hrulefill\\ \theta =(\pi )/(2)\\[1em] r=(8)/(3) \end{cases}\implies A=\cfrac{1}{2}\cdot \cfrac{\pi }{2}\cdot\left( \cfrac{8}{3} \right)^2 \\\\\\ A=\cfrac{1}{2}\cdot \cfrac{\pi }{2}\cdot \cfrac{64}{9}\implies A=\cfrac{16\pi }{9}\implies A\approx 5.59

User Krzysztof Platis
by
8.7k points