161k views
1 vote
Rewrite sin(2tan^-1 u/6) as an algebraic expression

User BrakNicku
by
8.8k points

1 Answer

2 votes

Answer: sin(2tan^-1(u/6)) = (2u) / [(u² + 36) * √(u² + 36)]

Step-by-step explanation: We can use the trigonometric identity:

tan(2θ) = (2 tan θ) / (1 - tan² θ)

to rewrite sin(2tan^-1(u/6)) as an algebraic expression.

Step 1: Let θ = tan^-1(u/6). Then we have:

tan θ = u/6

Step 2: Substitute θ into the formula for tan(2θ):

tan(2θ) = (2 tan θ) / (1 - tan² θ)

tan(2 tan^-1(u/6)) = (2 tan(tan^-1(u/6))) / [1 - tan²(tan^-1(u/6))]

tan(2 tan^-1(u/6)) = (2u/6) / [1 - (u/6)²]

tan(2 tan^-1(u/6)) = (u/3) / [(36 - u²) / 36]

Step 3: Simplify the expression by using the Pythagorean identity:

1 + tan² θ = sec² θ

tan² θ = sec² θ - 1

1 - tan² θ = 1 / sec² θ

tan(2 tan^-1(u/6)) = (u/3) / [(36 - u²) / 36]

tan(2 tan^-1(u/6)) = (u/3) * (6 / √(36 - u²))²

tan(2 tan^-1(u/6)) = (u/3) * (36 / (36 - u²))

Step 4: Rewrite the expression in terms of sine.

Recall that:

tan θ = sin θ / cos θ

sin θ = tan θ * cos θ

cos θ = 1 / √(1 + tan² θ)

Using this identity, we can rewrite the expression for tan(2tan^-1(u/6)) as:

sin(2tan^-1(u/6)) = tan(2tan^-1(u/6)) * cos(2tan^-1(u/6))

sin(2tan^-1(u/6)) = [(u/3) * (36 / (36 - u²))] * [1 / √(1 + [(u/6)²])]

simplify to get:

sin(2tan^-1(u/6)) = (2u) / [(u² + 36) * √(u² + 36)]

User Harikrishnan R
by
8.1k points

Related questions

asked Nov 10, 2024 157k views
Suyash Salampuria asked Nov 10, 2024
by Suyash Salampuria
8.2k points
1 answer
4 votes
157k views
asked Jun 22, 2024 126k views
MatsLindh asked Jun 22, 2024
by MatsLindh
8.5k points
1 answer
1 vote
126k views
asked Mar 23, 2024 155k views
Abderrahmane asked Mar 23, 2024
by Abderrahmane
7.8k points
2 answers
5 votes
155k views