let's firstly get the EQUATion, of the graph before we get the inequality.
so we have a quadratic with two zeros, at -6 and 8, hmmm and we also know that it passes through (-2 , 10)
![\begin{cases} x = -6 &\implies x +6=0\\ x = 8 &\implies x -8=0\\ \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{original~polynomial}{a ( x +6 )( x -8 ) = \stackrel{0}{y}}\hspace{5em}\textit{we also know that } \begin{cases} x=-2\\ y=10 \end{cases}](https://img.qammunity.org/2024/formulas/mathematics/high-school/egsdeopwmoqqdl6zn1j1i5jna1mm95xo6x.png)
![a ( -2 +6 )( -2 -8 ) = 10\implies a(4)(-10)=10\implies -40a=10 \\\\\\ a=\cfrac{10}{-40}\implies a=-\cfrac{1}{4} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{1}{4}(x+6)(x-8)=y\implies -\cfrac{1}{4}(x^2-2x-48)=y \\\\\\ ~\hfill {\Large \begin{array}{llll} -\cfrac{x^2}{4}+\cfrac{x}{2}+12=y \end{array}}~\hfill](https://img.qammunity.org/2024/formulas/mathematics/high-school/6nh3nj1mvvpxp8yuzrs0fvtp8ebpq0fox3.png)
now, hmmm let's notice something, the line of the graph is a solid line, that means the borderline is included in the inequality, so we'll have either ⩾ or ⩽.
so hmmm we could do a true/false region check by choosing a point and shade accordingly, or we can just settle with that, since the bottom is shaded, we're looking at "less than or equal" type, or namely ⩽, so that's our inequality
