The accurate answer is:
A. A=[0 0; -9 4], B=[0; 8], C=[1 0; 0 -3;], and D=[-9 0; 0 -3]
Step-by-step explanation:
A matrix represents the coefficients of the state variables in the state-space equations. Based on the given state-variable models, we have x·1 = -9x1 + 4x2 and x·2 = -3x2 + 8u. Therefore, the matrix A would be [0 0; -9 4], representing the coefficients of x1 and x2 in the state equations.
B matrix represents the coefficients of the input variable (u) in the state-space equations. Based on the given state-variable models, we have x·1 = -9x1 + 4x2 and x·2 = -3x2 + 8u. Therefore, the matrix B would be [0; 8], representing the coefficient of u in the state equations.
C matrix represents the coefficients of the state variables in the output equation. Based on the given state-variable models, the outputs are x1 and x2. Therefore, the matrix C would be [1 0; 0 -3], representing the coefficients of x1 and x2 in the output equations.
D matrix represents the coefficients of the input variable (u) in the output equation. Based on the given state-variable models, the outputs are x1 and x2, and there is no direct dependence on the input u in the output equations. Therefore, the matrix D would be [0 0; 0 0], representing no direct dependence of u in the output equations.