22.3k views
5 votes
Find the value of 2a - 1/√a + 1/a where a = 4+2√3​

User Soupi
by
9.0k points

2 Answers

3 votes

Answer:


(19 + 6 √(3) )/(2)

Explanation:


2a - (1)/( √(a) ) + (1)/(a) \: \: \: when \: \: a = 4 + 2 √(3)


2 * (4 + 2 √(3) ) - \frac{1}{ \sqrt{4 + 2 √(3) } } + (1)/(4 + 2 √(3) )

Expand the brackets (multiply every term inside the bracket by the term on the outside) and make the denominator the same (4 + 23):


((8 + 4√(3) )*(4 + 2 √(3) ) )/(4 + 2 √(3) ) - \frac{ \sqrt{4 + 2 √(3) } }{4 + 2 √(3) } + (1)/(4 + 2 √(3) )


\frac{32 + 16 √(3) + 16 √(3) + 24 - \sqrt{4 + 2 √(3) } + 1}{4 + 2 √(3) }

Collect like-terms:


\frac{57+ 32 √(3) - \sqrt{4 + 2 √(3) } }{4 + 2 √(3) }


\frac{57 + 32 √(3) - \sqrt{( {1 + √(3)) }^(2) } }{4 + 2 √(3) }


(57 + 32 √(3) - (1 + √(3) ))/(4 + 2 √(3) )

Eliminate the parentheses:


(57 + 32 √(3) - 1 - √(3) )/(4 + 2 √(3) )

Collect like terms:


(56 + 31 √(3) )/(4 + 2 √(3) )


(56 + 31 √(3) )/(4 + 2 √(3) ) * (4 - 2 √(3) )/(4 - 2 √(3) ) = (224 - 112 √(3) + 124 √(3) - 186)/(16 - 4 * 3) = (38 + 12 √(3) )/(4)


(2(19 + 6 √(3)) )/(4) = (19 + 6 √(3) )/(2)

User Taymour
by
7.8k points
5 votes
Okay, let's substitute the value of a in the given expression:

2a - 1/√a + 1/a

= 2(4+2√3) - 1/√(4+2√3) + 1/(4+2√3)

= 8 + 4√3 - 1/(√(4+2√3)) + 1/(4+2√3)

Now let's simplify the expression by rationalizing the denominators:

= 8 + 4√3 - (1*(√(4+2√3)))/(√(4+2√3)*(√(4+2√3))) + (1*(√(4+2√3)))/(√(4+2√3)*(4+2√3))

= 8 + 4√3 - (√(4+2√3))/(4+2√3) + (√(4+2√3))/(4+2√3)

= 8 + 4√3

Therefore, the value of the expression is 8 + 4√3.
User Jane Sully
by
7.7k points