AB is a straight line ⇒ m(∡BXA) = 180°
m(∡BXA) = m(∡BXY) + m(∡YXA) ⇔
⇔ 180° = 60° + m(∡YXA) ⇔
⇔ 60° + m(∡YXA) = 180° ⇔
⇔ m(∡YXA) = 180° - 60° ⇒ m(∡YXA) = 120°
∆XYZ is an isosceles triangle and has an angle of 90° ⇒ m(∡ZXY) = m(∡XYZ) = 45°, because a triangle has 180°
m = m(∡AXZ) ⇒ m(∡AXZ) = ?
m(∡BXA) = m(∡BXY) + m(∡YXZ) + m(∡AXZ) ⇔
⇔ 180° = 60° + 45° + m(∡AXZ) ⇔
⇔ 105° + m(∡AXZ) = 180° ⇔
⇔ m(∡AXZ) = 180° - 105° ⇒ m(∡AXZ) = 75° ⇔
⇔ m = 75°
Good luck! :)