89.6k views
4 votes
Write the equation of the circle with the segment whose endpoints are (-2,5) and (4,7) as the diameter. (Hint.... the center of a circle is the midpoint of the diameter.)

User Rqmok
by
8.1k points

1 Answer

4 votes

yeap, the midpoint is the center of it and half the distance between those two points is the radius.


~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-2}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{7}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 4 -2}{2}~~~ ,~~~ \cfrac{ 7 +5}{2} \right) \implies \left(\cfrac{ 2 }{2}~~~ ,~~~ \cfrac{ 12 }{2} \right)\implies \stackrel{ center }{(1~~,~~6)} \\\\[-0.35em] ~\dotfill


~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-2}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{7})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ \stackrel{ diameter }{d}=√((~~4 - (-2)~~)^2 + (~~7 - 5~~)^2) \implies d=√((4 +2)^2 + (7 -5)^2) \\\\\\ d=√(( 6 )^2 + ( 2 )^2) \implies d=√( 36 + 4 ) \implies d=√( 40 )~\hfill \stackrel{radius}{\cfrac{√(40)}{2}} \\\\[-0.35em] ~\dotfill


\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \hspace{5em}\stackrel{center}{(\underset{1}{h}~~,~~\underset{6}{k})}\qquad \stackrel{radius}{\underset{(√(40))/(2)}{r}} \\\\[-0.35em] ~\dotfill\\\\ ( ~~ x - 1 ~~ )^2 ~~ + ~~ ( ~~ y-6 ~~ )^2~~ = ~~\left( (√(40))/(2) \right)^2\implies \boxed{(x-1)^2+(y-6)^2=10}

User Exel Gamboa
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories