201k views
3 votes
Let S = 1; 2; 3; 4; 5(a) List all the 3-permutations of S.(b) List all the 3-combinations of S.

2 Answers

2 votes

Final answer:

To list all the 3-permutations of S, select 3 numbers from the set S and arrange them in different orders. To list all the 3-combinations of S, select 3 numbers from the set S without considering their order.

Step-by-step explanation:

To list all the 3-permutations of S, we need to select 3 numbers from the set S = {1, 2, 3, 4, 5} and arrange them in different orders. The 3-permutations are:

  1. 123
  2. 124
  3. 125
  4. 132
  5. 134
  6. 135
  7. 142
  8. 143
  9. 145
  10. 152
  11. 153
  12. 154
  13. 213
  14. 214
  15. 215
  16. 231
  17. 234
  18. 235
  19. 241
  20. 243
  21. 245
  22. 251
  23. 253
  24. 254
  25. 312
  26. 314
  27. 315
  28. 321
  29. 324
  30. 325
  31. 341
  32. 342
  33. 345
  34. 351
  35. 352
  36. 354
  37. 412
  38. 413
  39. 415
  40. 421
  41. 423
  42. 425
  43. 431
  44. 432
  45. 435
  46. 451
  47. 452
  48. 453
  49. 512
  50. 513
  51. 514
  52. 521
  53. 523
  54. 524
  55. 531
  56. 532
  57. 534
  58. 541
  59. 542
  60. 543

To list all the 3-combinations of S, we need to select 3 numbers from the set S = {1, 2, 3, 4, 5} without considering their order. The 3-combinations are:

  1. 123
  2. 124
  3. 125
  4. 134
  5. 135
  6. 145
  7. 234
  8. 235
  9. 245
  10. 345

User Kamaal ABOOTHALIB
by
9.0k points
3 votes

Final answer:

To list all the 3-permutations of S, we select 3 elements from the set S without repetition and order matters. The number of possible outcomes is 60. To list all the 3-combinations of S, we select 3 elements from the set S without repetition and order does not matter. The number of possible outcomes is 10.

Step-by-step explanation:

(a) To list all the 3-permutations of S, we need to select 3 elements from the set S without repetition and order matters. We can use the formula for permutations to calculate the number of possible outcomes: P(S,3) = 5! / (5-3)! = 5! / 2! = 5 × 4 × 3 = 60.

The 3-permutations of S are: (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 2), (1, 3, 4), (1, 3, 5), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 5, 2), (1, 5, 3), (1, 5, 4), (2, 1, 3), (2, 1, 4), (2, 1, 5), (2, 3, 1), (2, 3, 4), (2, 3, 5), (2, 4, 1), (2, 4, 3), (2, 4, 5), (2, 5, 1), (2, 5, 3), (2, 5, 4), (3, 1, 2), (3, 1, 4), (3, 1, 5), (3, 2, 1), (3, 2, 4), (3, 2, 5), (3, 4, 1), (3, 4, 2), (3, 4, 5), (3, 5, 1), (3, 5, 2), (3, 5, 4), (4, 1, 2), (4, 1, 3), (4, 1, 5), (4, 2, 1), (4, 2, 3), (4, 2, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5), (4, 5, 1), (4, 5, 2), (4, 5, 3), (5, 1, 2), (5, 1, 3), (5, 1, 4), (5, 2, 1), (5, 2, 3), (5, 2, 4), (5, 3, 1), (5, 3, 2), (5, 3, 4), (5, 4, 1), (5, 4, 2), (5, 4, 3).

(b) To list all the 3-combinations of S, we need to select 3 elements from the set S without repetition and order does not matter. We can use the formula for combinations to calculate the number of possible outcomes:

C(S,3) = 5! / (3! × (5-3)!) = 5! / (3! × 2!) = 5 × 4 / 2 = 10.

The 3-combinations of S are: (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5).

User Ken Barber
by
8.6k points

No related questions found