115k views
3 votes
6^3/2 + 6^1/2= 7 square root of 6

We know the answer but don’t understand how they got it.

Can someone explain?

User AMadinger
by
7.5k points

1 Answer

7 votes

Answer:


6^{(3)/(2)}+6^{(1)/(2)}=7√(6)

Explanation:

Given expression:


6^{(3)/(2)}+6^{(1)/(2)}

Begin by rewriting the exponent of the first term as 1 + ¹/₂:


\implies 6^{1+(1)/(2)}+6^{(1)/(2)}


\textsf{Apply the exponent rule:} \quad a^(b+c)=a^b \cdot a^c


\implies 6^(1) \cdot 6^{(1)/(2)}+6^{(1)/(2)}


\textsf{Apply the exponent rule:} \quad a^1=a


\implies 6 \cdot 6^{(1)/(2)}+6^{(1)/(2)}


\textsf{Rewrite\;$6^{(1)/(2)}$\;as\;$1 \cdot 6^{(1)/(2)}$:}


\implies 6 \cdot 6^{(1)/(2)}+1\cdot6^{(1)/(2)}


\textsf{Factor out}\;6^{(1)/(2)}:


\implies \left(6+1\right)6^{(1)/(2)}

Simplify:


\implies 7 \cdot 6^{(1)/(2)}


\textsf{Apply the exponent rule:} \quad a^{(1)/(2)}=√(a), \;\;a\geq0


\implies 7 √(6)

User Arune
by
7.7k points