62.1k views
3 votes
F(x)=2x^(2)-3x-5 write in vertex form

User Prismspecs
by
8.8k points

1 Answer

3 votes

Answer:


\boxed{f(x)=(√(2)x-(3)/(2√(2) )) ^2-(49)/(8)}

Explanation:

To convert our function
f(x)=2x^(2)-3x-5 to the vertex form, we must express it in the following form:


f(x) = a(x - h)^2 + k

where:


  • a= vertical compression

  • h= horizontal traslation

  • k= vertical translation

To convert the function, I will look for a square binomial that gives me the first two terms of our function.


\begin{aligned} (√(2)x-(3)/(2√(2) )) ^2& = 2x^2 - (3)/(2)x-(3)/(2)x+(3^2)/(2^2(2))\\ (√(2)x-(3)/(2√(2) )) ^2 &=2x^2-3x +(9)/(8) \\ (√(2)x-(3)/(2√(2) )) ^2-(9)/(8)&=2x^2-3x \end{aligned}

Now, I substitute
2x^2-3x


f(x)=(√(2)x-(3)/(2√(2) )) ^2-(9)/(8)-5\\f(x)=(√(2)x-(3)/(2√(2) )) ^2-(49)/(8)

Hope it helps


\text{-B$\mathfrak{randon}$VN}

User Ali Besharati
by
8.4k points