Answer: Yes, I agree with Luna's statement that if 8^x > 0, then the value of x must be greater than 0.
The reason for this is that any positive number raised to any power will always be positive. Therefore, 8 raised to any power, including x, will always be positive.
On the other hand, any number raised to an even power will always be positive, including negative numbers. However, any number raised to an odd power can be either positive or negative, depending on whether the base is positive or negative.
Therefore, if 8^x is positive, it means that x must be an even number or zero. However, since we are given that 8^x > 0, we know that x cannot be zero or a negative even number. Therefore, the only possibility is that x is a positive number, i.e., x > 0.
In summary, if 8^x > 0, then x must be greater than 0, because any positive number raised to any power is always positive.
Explanation: