Part A: The image position is approximately
. Since the object is in front of the mirror (real object), and the image distance is positive, it means the image is formed on the opposite side from the mirror.
Prat B: Therefore, the image height (h') is approximately
.
Part A: For a converging mirror, the mirror equation relates the object distance (s), the image distance (s'), and the focal length (f):
![\[(1)/(f) = (1)/(s) + (1)/(s')\]](https://img.qammunity.org/2024/formulas/physics/high-school/a44h0xgx6o7j42km9cfyqqadc3n7xrji8h.png)
Given:
Object height (h) = 3.0 cm (positive because it's an upright object)
Object distance (s) = -45 cm (negative because the object is in front of the mirror, which is the opposite direction of the light rays)
Focal length (f) = 25 cm
Let's first solve for the image position (s') using the mirror equation:
![\[(1)/(f) = (1)/(s) + (1)/(s')\]](https://img.qammunity.org/2024/formulas/physics/high-school/a44h0xgx6o7j42km9cfyqqadc3n7xrji8h.png)
Plugging in the given values:
![\[\frac{1}{25 \, \text{cm}} = \frac{1}{-45 \, \text{cm}} + (1)/(s')\]](https://img.qammunity.org/2024/formulas/physics/high-school/cawlvo3fkdz3rqb3k7ivzpea97qik3cwbc.png)
Solving for s':
![\[(1)/(s') = \frac{1}{25 \, \text{cm}} - \frac{1}{-45 \, \text{cm}}\]](https://img.qammunity.org/2024/formulas/physics/high-school/612rfoz2v651gcwcztw9b0c3sf71uk34ra.png)
![\[(1)/(s') = \frac{1}{25 \, \text{cm}} + \frac{1}{45 \, \text{cm}}\]](https://img.qammunity.org/2024/formulas/physics/high-school/g6uywob0qpmt0sj627sagkhh5r0jqsi6ek.png)
![\[(1)/(s') = \frac{18}{225 \, \text{cm}} + \frac{10}{225 \, \text{cm}}\]](https://img.qammunity.org/2024/formulas/physics/high-school/rv0i78byh6smgm211w9ivb7zt6yvlvbqsh.png)
![\[(1)/(s') = \frac{28}{225 \, \text{cm}}\]](https://img.qammunity.org/2024/formulas/physics/high-school/zi9vegav46anp9c5bhumxt9nr3kgveg61d.png)
![\[s' = \frac{225 \, \text{cm}}{28}\]](https://img.qammunity.org/2024/formulas/physics/high-school/yc3dtf92182b68bw4bn1w6pc0hzbfn3mrs.png)
Calculating s':
![\[s' \approx 8.04 \, \text{cm}\]](https://img.qammunity.org/2024/formulas/physics/high-school/8ei6n4v1btxysu5ebqpos1u7oaj8ziskgs.png)
Part B: Now, let's calculate the image height (h') using the magnification formula:
![\[M = -(s')/(s)\]](https://img.qammunity.org/2024/formulas/physics/high-school/90difdx98h99b2kq96elsga3kdg446z9ou.png)
Given:


Calculating M:
![\[M = -\frac{8.04 \, \text{cm}}{-45 \, \text{cm}}\]](https://img.qammunity.org/2024/formulas/physics/high-school/aorsphux7dipkvz3cmu21n0ou7xvtu8uph.png)
![\[M \approx 0.1787\]](https://img.qammunity.org/2024/formulas/physics/high-school/5h5ws6m2dupk38fzl57if4hmy02fp1o6ye.png)
The negative sign in the magnification indicates an inverted image.
Now, using the formula for magnification:
![\[M = (h')/(h)\]](https://img.qammunity.org/2024/formulas/physics/high-school/bq4ujc3vbr1yvdmjwpdtcj11rsb2va93jg.png)
Given:
(object height)
Calculating h':
![\[h' = M * h\]](https://img.qammunity.org/2024/formulas/physics/high-school/6ond4fiq2tyen0gofnxbo7vihjkeoelcrw.png)
![\[h' = 0.1787 * 3.0 \, \text{cm}\]](https://img.qammunity.org/2024/formulas/physics/high-school/62vx15eo4tg62uq2kfiyih014ztfwal5zx.png)
Calculating \(h'\):
![\[h' \approx 0.5361 \, \text{cm}\]](https://img.qammunity.org/2024/formulas/physics/high-school/hz8ub89kbgcggcr325tbumw3dyg5f9buut.png)