The initial value problem of equivalent integral equation is:
- y(x) =
is y(x) = x² - y(x) = 1+x is y(x) = 1+x+2[
] - y(x) = cosx is given by y = -sinx - x +
+ 1 +x + x² + x³/3! + x⁴/3!
1) Given initial value problem is:

y(x) =
, y = 1
The equivalent integral equation is,

Then by pieard's method,


y(x) =
-1
y(x) = x²
2) The given initial value problem is,

y(x) = 1+x
The equivalent integral equation is,

Then by pieard's method,
![y = 1 + \int\limits^x_0 {(s+1+s)} \, dx \\\\= 1+\int\limits^0_x {(1+2s)} \, dx \\= 1+[s]^x_0+2[(s^2)/(2) ]^x_0\\=1+x+x^2](https://img.qammunity.org/2024/formulas/mathematics/high-school/nbn4ilufkkpoznszhvhynpqk71jawsxg3y.png)
y(x) = 1+x+2[
]
3) The given initial value problem is,

y(x) = cosx
The equivalent integral equation is,

Then by pieard's method,

y = -sinx - x +
+ 1 +x + x² + x³/3! + x⁴/3!
Leran more