Answer:
Explanation:
To predict the number of bacteria after 10 hours using the formula P = Aekt, where P is the final population, A is the initial population, k is the growth rate, and t is the time elapsed, we need to first find the value of k.
dw
We know that after 4 hours, the population grew from 3,000 bacteria to 3,600 bacteria. So we can set up an equation:
3,600 = 3,000e^(4k)
Dividing both sides by 3,000 gives:
1.2 = e^(4k)
Taking the natural logarithm of both sides gives:
ln(1.2) = 4k
Solving for k, we get:
k = ln(1.2)/4
k ≈ 0.051
Now that we have the value of k, we can use the formula to predict the number of bacteria after 10 hours:
P = 3,000e^(0.051*10)
P ≈ 5,426
Therefore, we predict that after 10 hours, there will be approximately 5,426 bacteria present in the culture.