Step-by-step explanation:
The temperature change of a substance when it absorbs or loses energy can be calculated using the specific heat capacity of the substance. The specific heat capacity of water is approximately 4.18 J/(g°C), which means that it takes 4.18 joules of energy to raise the temperature of 1 gram of water by 1 degree Celsius.
To calculate the temperature change of the water sample when 50 joules of energy is added, we need to use the following equation:
q = m * c * ΔT
where q is the amount of energy absorbed by the water, m is the mass of the water sample, c is the specific heat capacity of water, and ΔT is the resulting temperature change.
Rearranging the equation to solve for ΔT, we get:
ΔT = q / (m * c)
Plugging in the values, we get:
ΔT = 50 J / (m * 4.18 J/(g°C))
We need to know the mass of the water sample to calculate the temperature change. Let's assume a mass of 10 grams:
ΔT = 50 J / (10 g * 4.18 J/(g°C))
ΔT = 1.2°C
Therefore, if 50 joules of energy is added to a 10-gram sample of water, the resulting temperature change will be approximately 1.2 degrees Celsius.