Designing a device to minimize impact from a collision:
The device I would design to minimize impact from a collision would be a shock absorber made from a combination of rubber and metal. The device would be installed between the two colliding objects, and its function would be to absorb and dissipate the energy of the collision, thereby reducing the impact forces on the objects.
CONSTRUCTION:
- The shock absorber would consist of a metal cylinder with a rubber insert that would compress upon impact. The metal cylinder would be made from a strong and durable material such as steel, while the rubber insert would be made from a high-density rubber material with excellent shock-absorbing properties.
Compared to existing shock-absorbing devices such as airbags and crumple zones, this design would be more efficient in reducing the impact forces on the colliding objects. Unlike airbags and crumple zones, which are designed to absorb the impact forces by deforming, the shock absorber would absorb the impact energy through compression and dissipation of the energy as heat.
Designing a device to convert one form of energy to another:
- The device I would design to convert one form of energy to another would be a piezoelectric generator. The function of this device would be to convert mechanical energy into electrical energy through the use of piezoelectric materials.
- The piezoelectric generator would consist of a piezoelectric material such as quartz or lead zirconate titanate (PZT) sandwiched between two metal plates. When mechanical stress is applied to the piezoelectric material, it generates an electrical voltage across the metal plates.
Compared to existing devices such as generators and batteries, the piezoelectric generator would be more efficient in converting mechanical energy into electrical energy. This is because the piezoelectric effect is a direct conversion of mechanical energy into electrical energy, without the need for any intermediate steps such as the conversion of mechanical energy into rotational energy in a generator. Additionally, the piezoelectric generator would be smaller and more lightweight than traditional generators, making it ideal for use in portable electronic devices.