Explanation:
If we let A be the event that Trevor studies for at least 50 minutes, and let B be the event that he passes his Algebra test, then we know:
P(A and B) = 0.88
P(A) = 0.92
We want to find the probability that Trevor passes his Algebra test given that he studied for at least 50 minutes, or in other words, we want to find P(B|A).
We can use Bayes' theorem to find this probability:
P(B|A) = P(A and B) / P(A)
Substituting in our values, we get:
P(B|A) = 0.88 / 0.92
Simplifying this fraction, we get:
P(B|A) = 0.9565
Therefore, the probability that Trevor passes his Algebra test given that he studied for at least 50 minutes is approximately 0.9565.