Answer:
0.08 atm
Step-by-step explanation:
The pressure change of a gas at constant volume can be determined using the ideal gas law:
PV = nRT
Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
Since the volume is constant, we can simplify the ideal gas law to:
P = (nRT) / V
The number of moles and the gas constant are constant for a given sample of gas, so we can further simplify to:
P1 / T1 = P2 / T2
Where P1 and T1 are the initial pressure and temperature, and P2 and T2 are the final pressure and temperature.
Plugging in the given values:
P1 = 2.50 atm
T1 = 30.0 + 273.15 = 303.15 K
T2 = 40.0 + 273.15 = 313.15 K
P2 = (P1 * T2) / T1
P2 = (2.50 atm * 313.15 K) / 303.15 K
P2 = 2.58 atm
Therefore, the pressure change when a constant volume of gas at 2.50 atm is heated from 30.0 °C to 40.0 °C is 0.08 atm (2.58 atm - 2.50 atm).