191k views
1 vote
What is the volume and letters of a solution that contains 0.50 moles of NaOH dissolved in enough distilled water to make 3.0 mm of NaOH solution​

what is the molarity of a solution that contains 60.0 G of caoh dissolved in 150 mm solution​​

User Verism
by
8.1k points

1 Answer

4 votes

1. To find the volume and units of a solution that contains 0.50 moles of NaOH dissolved in enough distilled water to make 3.0 M NaOH solution:

We first need to use the formula:

moles = concentration (in moles/L) x volume (in L)

Rearranging the formula to solve for volume, we get:

volume = moles / concentration

Substituting the given values, we get:

volume = 0.50 moles / 3.0 M = 0.17 L

Since the volume is given in liters, the units of the solution are L. Therefore, the solution contains 0.50 moles of NaOH dissolved in 0.17 L of distilled water, which makes a 3.0 M NaOH solution.

2. To find the molarity of a solution that contains 60.0 g of Ca(OH)2 dissolved in 150 mL of solution:

We first need to convert the mass of Ca(OH)2 to moles using the molar mass:

molar mass of Ca(OH)2 = 40.08 g/mol + 2 x 16.00 g/mol + 2 x 1.01 g/mol = 74.10 g/mol

moles of Ca(OH)2 = 60.0 g / 74.10 g/mol = 0.810 moles

Next, we need to convert the volume of the solution from milliliters to liters:

volume of solution = 150 mL / 1000 mL/L = 0.150 L

Finally, we can use the formula:

molarity = moles / volume

Substituting the given values, we get:

molarity = 0.810 moles / 0.150 L = 5.4 M

Therefore, the molarity of the solution is 5.4 M.

User Niclas Larsson
by
7.7k points