Let's start by setting up a proportion to represent the ratio of Illinois students to Michigan students:
Illinois students / Michigan students = 6/5
We can simplify this proportion by multiplying both sides by 5:
Illinois students = 6/5 * Michigan students
Next, we can use the information in the table to set up an equation that relates the number of Illinois students, Michigan students, and Indiana students:
Illinois students + Michigan students + Indiana students = 175
We can substitute the expression we obtained for the number of Illinois students into this equation:
6/5 * Michigan students + Michigan students + Indiana students = 175
Multiplying both sides by 5 to eliminate the fraction, we get:
6 * Michigan students + 5 * Michigan students + 5 * Indiana students = 875
Combining like terms, we get:
11 * Michigan students + 5 * Indiana students = 875
Now we can use the fact that the ratio of Illinois students to Michigan students is 6:5 to set up another equation:
Illinois students / Michigan students = 6/5
Substituting the values from the table, we get:
Illinois students / Michigan students = 24/20
Cross-multiplying, we get:
Illinois students * 20 = Michigan students * 24
Simplifying, we get:
Illinois students = 6/5 * Michigan students = 24/20 * Michigan students = 6/5 * 24 Michigan students = 28.8 Michigan students
Since the number of students must be a whole number, we can round 28.8 up to 29. This means that there were 29 Michigan students.
Substituting this into the equation we obtained earlier, we get:
11 * 29 + 5 * Indiana students = 875
Solving for Indiana students, we get:
5 * Indiana students = 875 - 11 * 29 = 546
Dividing both sides by 5, we get:
Indiana students = 546/5 = 109.2
Since the number of students must be a whole number, we can round 109.2 up to 110. This means that there were 110 Indiana students.
Therefore, the answer is 110 students from Indiana.