186k views
5 votes
A 10​% solution of fertilizer is to be mixed with a ​60% solution of fertilizer in order to get 125 gallons of a 50​% solution. How many gallons of the 10​% solution and 60​% solution should be​ mixed?

1 Answer

7 votes


x=\textit{gallons of solution at 10\%}\\\\ ~~~~~~ 10\%~of~x\implies \cfrac{10}{100}(x)\implies 0.10 (x) \\\\\\ y=\textit{gallons of solution at 60\%}\\\\ ~~~~~~ 60\%~of~y\implies \cfrac{60}{100}(y)\implies 0.6 (y) \\\\\\ \textit{150 gallons of solution at 50\%}\\\\ ~~~~~~ 50\%~of~150\implies \cfrac{50}{100}(150)\implies 75 \\\\[-0.35em] ~\dotfill


\begin{array}{lcccl} &\stackrel{gallons}{quantity}&\stackrel{\textit{\% of gallons that is}}{\textit{fertilizer only}}&\stackrel{\textit{gallons of}}{\textit{fertilizer only}}\\ \cline{2-4}&\\ \textit{Sol'n of 10\%}&x&0.10&0.10x\\ \textit{Sol'n of 60\%}&y&0.60&0.60y\\ \cline{2-4}&\\ mixture&150&0.5&75 \end{array} \\\\\\ \begin{cases} x + y = 150\\\\ 0.10x+0.60y=75 \end{cases} \\\\[-0.35em] ~\dotfill


\stackrel{\textit{using the 1st equation}}{x+y=150}\implies y=150-x \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the 2nd equation}}{0.10x+0.60y=75}\implies \stackrel{\textit{substituting on the 2nd equation from above}}{0.10x+0.60(150-x)=75} \\\\\\ 0.10x+90-0.60x=75\implies 90-0.50x=75\implies 90=0.50x+75 \\\\\\ 15=0.50x\implies \cfrac{15}{0.50}=x\implies \boxed{30=x}\hspace{5em}\stackrel{ 150~~ - ~~30 }{\boxed{y=120}}

User GrayFullBuster
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories