165k views
5 votes
What are the domain and range of the function f(x) x^2 +8x+7 over x+1

What are the domain and range of the function f(x) x^2 +8x+7 over x+1-example-1
User Quimnuss
by
8.0k points

1 Answer

2 votes

Answer: The function given is f(x) = (x^2 + 8x + 7)/(x + 1).

The domain of a function is the set of all possible input values for which the function is defined. In this case, the function f(x) is defined for all real numbers except for x = -1, because division by zero is undefined in mathematics. Therefore, the domain of f(x) is all real numbers except x = -1, or in interval notation: (-∞, -1) ∪ (-1, ∞).

The range of a function is the set of all possible output values that the function can produce. For this rational function, the range depends on the behavior of the function as x approaches positive and negative infinity. As x approaches positive or negative infinity, the function f(x) approaches 0, because the highest power of x in the numerator (x^2) and the highest power of x in the denominator (x) have the same degree, and their coefficients (1 in the numerator and 1 in the denominator) are equal. Therefore, the range of f(x) is all real numbers except 0, or in interval notation: (-∞, 0) ∪ (0, ∞). Note that f(x) never actually equals 0, because the function is defined for all real numbers except x = -1. However, it can arbitrarily approach 0 as x approaches positive or negative infinity. So, 0 is excluded from the range. Therefore, the correct answer is: Range = (-∞, 0) ∪ (0, ∞). Note that the range is expressed in interval notation, which uses parentheses to indicate open intervals (excluding the endpoints) and the union symbol (∪) to indicate the combination of two or more sets. In this case, the range consists of all real numbers except 0, expressed as two separate open intervals. The domain is also expressed in interval notation, with the union symbol (∪) used to indicate the combination of two disjoint sets. In this case, the domain consists of all real numbers except -1, expressed as the union of two separate intervals. So, the final answer is: Domain = (-∞, -1) ∪ (-1, ∞) and Range = (-∞, 0) ∪ (0, ∞). I hope this helps! Let me know if you have any further questions. I am here to help! Keep in mind that if you need to use the function f(x) in a real-world context, you should also consider any additional restrictions or conditions that may apply. It's always important to carefully analyze the properties of a function in the context of the problem you are trying to solve.

Explanation:

User Cqde
by
7.6k points

No related questions found