215k views
0 votes
3 For y=f(x) = 9x, x= 3, and Ax = 0.03 find a) y for the given x and Ax values, b) dy = f'(x)dx, to) dy for the given x and Ax values.

1 Answer

4 votes


a) To find y for the given x and Δx values, first calculate x + Δx:
x + Δx = 3 + 0.03 = 3.03

Now, use the function y = f(x) = 9x to find the y values:
y = 9(3) = 27 (for x = 3)
y = 9(3.03) = 27.27 (for x = 3.03)

b) To find dy, we first need to find the derivative of the function (f'(x)). The function is y = f(x) = 9x, and its derivative (using differentiation) is:
f'(x) = 9

c) To find dy for the given x and Δx values, we can now use the formula dy = f'(x)dx:
dy = f'(x)dx = 9(0.03) = 0.27

So, for the given x and Δx values, a) y is 27 and 27.27, b) dy is equal to 9, and c) dy for the given x and Δx values is 0.27.

User Urs
by
8.8k points

No related questions found