174k views
2 votes
A can do a pices of work in 20 day. B can do same work in 30 day and C can do in 40 day. Both of three started work together but A left in 5 day and I left 10 day before complition. How many days will be work complited.​

User Liridon
by
8.3k points

1 Answer

6 votes
Let's first find the portion of work that each person can do in a day:

A can do 1/20 of the work in a day.
B can do 1/30 of the work in a day.
C can do 1/40 of the work in a day.

Working together, the three of them can do:

1/20 + 1/30 + 1/40 = 6/120 = 1/20

So, they can complete 1/20 of the work in a day.

Let's say the total work is represented by the variable W. Since they worked together for x days, the portion of work completed by the three of them is (1/20)xW.

After 5 days, A left, so only B and C were working for x-5 days. The portion of work completed by B and C is (1/30 + 1/40)(x-5)W.

After another 5 days, B also left, so only C was working for x-10 days. The portion of work completed by C is (1/40)(x-10)W.

The total portion of work completed is the sum of these three portions:

(1/20)xW + (1/30 + 1/40)(x-5)W + (1/40)(x-10)W = W

Simplifying this equation, we get:

x/4 - 1/8 = 1

Multiplying both sides by 8, we get:

2x - 1 = 8

2x = 9

x = 4.5

Therefore, the three of them working together can complete the work in 4.5 days.
User Timo Kosig
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.