x - 2y = 2. …………(1). and x + y^2 =10. ………………(2).
Subtracting eqn. (1) from eqn. (2).
y^2 + 2y = 8.
or, y^2 +2y - 8 =0.
or, (y +4).(y-2)=0.
or, y = -4 , 2. and x = -6 , 6.
Thus, A(-6,-4) and B(6,2). let the mid point of AB is M , M((-6+6)/2,(-4+2)/2)
or, M(0, -1).
slope of AB = (2+4)/(6+6) = 1/2.
Slope of the perpendicular bisector of the line AB= -2.
Hence, the eqn. of the perpendicular bisector of AB is:-
y. +1 = - 2.(x - 0).
or, 2.x + y + 1 = 0. Answer.