21.2k views
2 votes
- Q1) Prove that: 2log (15÷18) - log (25÷162)+ Log(4÷9) =log 2​

User Chris Vdp
by
7.9k points

1 Answer

3 votes

Answer:

See below for proof.

Explanation:

Given logarithmic equation:


2\log\left((15)/(18)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)=\log \left(2\right)

We can use Log Laws to prove that the left side of the equation equals the right side of the equation.


\textsf{Apply the Power law:} \quad n\log_ax = \log_ax^n


\implies \log\left((15)/(18)\right)^2-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\textsf{Apply the exponent rule:} \quad \left((a)/(b)\right)^c=(a^c)/(b^c)


\implies \log\left((15^2)/(18^2)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\implies \log\left((225)/(324)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\textsf{Apply the Quotient law:} \quad \log_ax - \log_ay=\log_a \left((x)/(y)\right)


\implies \log\left(((225)/(324))/((25)/(162))\right)+\log\left((4)/(9)\right)


\implies \log\left((225)/(324)\cdot(162)/(25)\right)+\log\left((4)/(9)\right)


\implies \log\left((9)/(2)\right)+\log\left((4)/(9)\right)


\textsf{Apply the Product law:}\quad \log_ax + \log_ay=\log_axy


\implies \log\left((9)/(2) \cdot (4)/(9)\right)


\implies \log\left((4)/(2) \right)


\implies \log \left(2\right)

Hence proving that the left side of the equation equals log(2).

User Malexanders
by
8.0k points