21.2k views
2 votes
- Q1) Prove that: 2log (15÷18) - log (25÷162)+ Log(4÷9) =log 2​

User Chris Vdp
by
7.9k points

1 Answer

3 votes

Answer:

See below for proof.

Explanation:

Given logarithmic equation:


2\log\left((15)/(18)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)=\log \left(2\right)

We can use Log Laws to prove that the left side of the equation equals the right side of the equation.


\textsf{Apply the Power law:} \quad n\log_ax = \log_ax^n


\implies \log\left((15)/(18)\right)^2-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\textsf{Apply the exponent rule:} \quad \left((a)/(b)\right)^c=(a^c)/(b^c)


\implies \log\left((15^2)/(18^2)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\implies \log\left((225)/(324)\right)-\log\left((25)/(162)\right)+\log\left((4)/(9)\right)


\textsf{Apply the Quotient law:} \quad \log_ax - \log_ay=\log_a \left((x)/(y)\right)


\implies \log\left(((225)/(324))/((25)/(162))\right)+\log\left((4)/(9)\right)


\implies \log\left((225)/(324)\cdot(162)/(25)\right)+\log\left((4)/(9)\right)


\implies \log\left((9)/(2)\right)+\log\left((4)/(9)\right)


\textsf{Apply the Product law:}\quad \log_ax + \log_ay=\log_axy


\implies \log\left((9)/(2) \cdot (4)/(9)\right)


\implies \log\left((4)/(2) \right)


\implies \log \left(2\right)

Hence proving that the left side of the equation equals log(2).

User Malexanders
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories