96.1k views
5 votes
Solve the equation for x.

5x2=65

Round your answer to three places.

User Vzm
by
7.6k points

2 Answers

4 votes

Final answer:

To solve the equation 5x^2 = 65 for x, divide both sides by 5 to get x^2 = 13. Then take the square root of both sides to find x ≈ +3.606 and x ≈ -3.606, both rounded to three decimal places.

Step-by-step explanation:

To solve the equation 5x^2 = 65 for x, we first divide both sides by 5 to isolate x^2:

x^2 = 65 / 5

x^2 = 13

Next, we take the square root of both sides. Since we are dealing with an equation, we consider both the positive and negative square roots:

x = ±√13

Finally, we find the approximate values and round them to three decimal places as requested:

  • x ≈ +3.606 (positive square root of 13)
  • x ≈ -3.606 (negative square root of 13)

Therefore, the solutions to the equation are x ≈ +3.606 and x ≈ -3.606, rounded to three decimal places.

User Pragnani
by
8.1k points
4 votes

Step-by-step explanation:

To solve the equation 5x^2 = 65 for x, we can start by dividing both sides by 5:

5x^2/5 = 65/5

Simplifying:

x^2 = 13

To isolate x, we can take the square root of both sides:

sqrt(x^2) = sqrt(13)

Note that the square root of x^2 is |x| (the absolute value of x), since x^2 is always positive. So:

|x| = sqrt(13)

Therefore, x can be either the positive or negative square root of 13:

x = +/- sqrt(13)

Rounding to three decimal places:

x ≈ +/- 3.606

User Arved
by
8.4k points

No related questions found