Answer:
To find the solution to f(x)=g(x), we need to find the point(s) where the two curves intersect.
The graph is not provided, but we can find the solution algebraically by setting the two functions equal to each other:
f(x) = g(x)
x^2 = 12^(x-1)
To solve for x, we can take the logarithm of both sides:
log(x^2) = log(12^(x-1))
2log(x) = (x-1)log(12)
2log(x) = xlog(12) - log(12)
2log(x) - xlog(12) = -log(12)
log(x^2) - log(12^x) = -log(12)
log(x^2/12^x) = -log(12)
log(x/12) = -log(12)
log(x) - log(12) = -log(12)
log(x) = 0
x = 1
Therefore, the solution to f(x)=g(x) is x=1.
Explanation: