102k views
2 votes
Write the series using sigma notation with lower limit n=4.

Write the series using sigma notation with lower limit n=4.-example-1
User HaaLeo
by
7.9k points

1 Answer

7 votes


\begin{array}{cccccccccc} &(-1)/(4)\left( -(1)/(2) \right)&(1)/(8)\left( -(1)/(2) \right)&(-1)/(16)\left( -(1)/(2) \right)&(1)/(32)\left( -(1)/(2) \right)\\ -\cfrac{1}{4}&\cfrac{1}{8}&-\cfrac{1}{16}&\cfrac{1}{32}&-\cfrac{1}{64}... \end{array}\hspace{5em}\stackrel{\textit{common ratio}}{r=-(1)/(2)} \\\\[-0.35em] ~\dotfill


\qquad \qquad \textit{sum of a finite geometric sequence} \\\\ \displaystyle S_n=\sum\limits_(i=1)^(n)\ a_1\cdot r^(i-1)\qquad \begin{cases} n=\textit{last term's}\\ \qquad position\\ a_1=\textit{first term}\\ r=\textit{common ratio}\\[-0.5em] \hrulefill\\ r=-(1)/(2)\\ a_1=-(1)/(4) \end{cases}\implies \sum_(n=1)^(n=4)~-(1)/(4)\left( -(1)/(2) \right)^(n-1)

User Shakeela
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories