Check the picture below.
so hmmm the square inscribed in the circle, we can see it as two congruent triangles, whose base is 28 and height is 14. Now, if we get the whole area of the circle with radius of 14, and subtract the area of those triangles, what's leftover is the shaded area.
![\stackrel{ \textit{\LARGE Areas} }{\stackrel{ circle }{\pi (14)^2}~~ - ~~\stackrel{ \textit{two triangles} }{2\left[\cfrac{1}{2}(\underset{b}{28})(\underset{h}{14}) \right]}}\implies 196\pi -392 ~~ \approx ~~ \text{\LARGE 223.75}](https://img.qammunity.org/2024/formulas/mathematics/high-school/61ozyj56djjv0121ola0dv9s62f17yyki7.png)