We can use trigonometry to solve this problem. Let the length of the rope be x. Then, we can draw a right triangle where the height of the tree is the opposite side, the length of the rope is the hypotenuse, and the angle of elevation is 60 degrees. The adjacent side can be found using the trigonometric function cosine:
cos 60° = adjacent / hypotenuse
1/2 = adjacent / x
Multiplying both sides by x, we get:
x/2 = adjacent
To find the length of the hypotenuse, we can use the Pythagorean theorem:
hypotenuse^2 = adjacent^2 + opposite^2
Substituting in the values we know, we get:
x^2 = (x/2)^2 + (9√5)^2
Simplifying the right side, we get:
x^2 = x^2/4 + 405
Multiplying both sides by 4, we get:
4x^2 = x^2 + 1620
Subtracting x^2 from both sides, we get:
3x^2 = 1620
Dividing both sides by 3, we get:
x^2 = 540
Taking the square root of both sides, we get:
x = √540 = 6√60
Therefore, the length of the rope that Rachel needs to hang the piñata is 6√60 feet. Rounded to the nearest tenth, this is approximately 74.1 feet.