Answer:
To solve the problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas:
(P1V1) / T1 = (P2V2) / T2
where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively. We are given P1 = 750 mmHg, V1 = 1.27 L, T1 = 298 K, V2 = 0.75 L, T2 = 448 K, and the amount of gas does not change.
First, we can solve for P2 by rearranging the equation as:
P2 = (P1V1T2) / (V2T1)
Substituting the values we get:
P2 = (750 mmHg x 1.27 L x 448 K) / (0.75 L x 298 K)
P2 = 1504 mmHg
Therefore, the final pressure at a volume of 0.75 L and a temperature of 448 K is 1504 mmHg.