230k views
2 votes
Raquel is presented with two loan options for a $60,000 student loan. Option A is a 10-year fixed rate loan with an annual interest rate of 4%, while Option B is a 20-year fixed-rate loan with an annual interest rate of 3%. Calculate the monthly payment for each option. What is the total amount paid over the life of the loan for each option? What is the total interest paid over the life of the loan for each option?

User Shazron
by
8.5k points

1 Answer

7 votes

Answer:

To calculate the monthly payment for each option, we can use the loan formula:

Payment = (P * r) / (1 - (1 + r)^(-n))

where P is the principal amount, r is the monthly interest rate, and n is the total number of payments.

For Option A, the principal amount is $60,000, the interest rate is 4% per year, and the loan term is 10 years. We first need to convert the annual interest rate to a monthly interest rate:

r = 4% / 12 = 0.00333333 (rounded to 8 decimal places)

n = 10 years * 12 months/year = 120 months

Using the loan formula, we get:

Payment = (60000 * 0.00333333) / (1 - (1 + 0.00333333)^(-120)) = $630.55

Therefore, the monthly payment for Option A is $630.55.

For Option B, the principal amount is also $60,000, the interest rate is 3% per year, and the loan term is 20 years. We convert the annual interest rate to a monthly interest rate:

r = 3% / 12 = 0.0025 (rounded to 4 decimal places)

n = 20 years * 12 months/year = 240 months

Using the loan formula, we get:

Payment = (60000 * 0.0025) / (1 - (1 + 0.0025)^(-240)) = $342.61

Therefore, the monthly payment for Option B is $342.61.

To calculate the total amount paid over the life of the loan for each option, we simply multiply the monthly payment by the total number of payments:

For Option A, the total amount paid = $630.55 * 120 months = $75,665.92

For Option B, the total amount paid = $342.61 * 240 months = $82,226.40

To calculate the total interest paid over the life of the loan for each option, we subtract the principal amount from the total amount paid:

For Option A, the total interest paid = $75,665.92 - $60,000 = $15,665.92

For Option B, the total interest paid = $82,226.40 - $60,000 = $22,226.40

Therefore, Option A has a lower monthly payment and total amount paid over the life of the loan, but Option B has a longer loan term and a lower interest rate, resulting in a higher total interest paid over the life of the loan

User Dobrivoje
by
9.0k points