Answer:
Let's represent the magnitude of both vectors A and B using the variable "m".
According to the problem statement, we have:
|A| = |B| = m
|A+B| = 3|A-B|
Squaring both sides, we get:
|A+B|^2 = 9|A-B|^2
Expanding the left-hand side using the dot product formula, we have:
(A+B)·(A+B) = A·A + 2A·B + B·B
Similarly, expanding the right-hand side, we have:
9(A-B)·(A-B) = 9A·A - 18A·B + 9B·B
Substituting the given magnitudes, we have:
(A+B)·(A+B) = 2m^2 + 2(A·B)
9(A-B)·(A-B) = 18m^2 - 18(A·B)
Substituting these expressions back into the original equation, we get:
2m^2 + 2(A·B) = 9(18m^2 - 18(A·B))
Simplifying and rearranging, we get:
20(A·B) = 323m^2
Dividing by |A|·|B| = m^2, we have:
20(cosθ) = 323
where θ is the angle between vectors A and B. Solving for θ, we get:
θ = cos⁻¹(323/20)/π * 180
θ ≈ 83.4 degrees