Answer:
Explanation:
Let's call the height of building A "hA" and the height of building B "hB". We can use trigonometry to solve for hB.
First, let's draw a diagram:
B
/|
hB/ |
/ |
/ 60°\
-----
| /
| /
| /
|/
A
We know that the distance between building A and B is 10√3. Let's call this distance "d".
Using the angle of depression of 30°, we can form a right triangle with a leg of hA and a hypotenuse of d. The opposite angle is 60°, so the adjacent side is hA/tan(60°) = hA/√3.
Using the angle of depression of 60°, we can form another right triangle with a leg of hB and a hypotenuse of d. The opposite angle is 30°, so the adjacent side is hB/tan(30°) = hB√3.
We know that the sum of the heights of building A and B is equal to the distance between them, so hA + hB = d.
Putting all of this together, we can set up an equation:
hA/√3 + hB√3 = 10√3
Multiplying both sides by √3:
hA + 3hB = 30
But we also know that hA + hB = d = 10√3, so we can substitute:
hB = 10√3 - hA
Substituting into the previous equation:
hA + 3(10√3 - hA) = 30
Simplifying:
-2hA + 30√3 = 30
-2hA = 30 - 30√3
hA = (15√3 - 15)/(-1) = 15 - 15√3
Finally, we can use hA + hB = 10√3 to solve for hB:
hB = 10√3 - hA = 10√3 - (15 - 15√3) = 25√3 - 15
Therefore, the height of building B is 25√3 - 15.