194k views
2 votes
most computer languages include a function that can be used to generate random numbers. in excel, the rand function can be used to generate random numbers between and . if we let denote a random number generated using rand, then is a continuous random variable with the following probability density function. a. select the probability density function. 1. 2. 3. 4. choose the correct graph from above: - select your answer - b. what is the probability of generating a random number between and (to 1 decimal place)? c. what is the probability of generating a random number with a value less than or equal to (to 1 decimal place)? d. what is the probability of generating a random number with a value greater than (to 1 decimal place)? e. using random numbers given below, compute the mean and standard deviation. 0.931806 0.398110 0.216843 0.826248 0.323101 0.235342 0.105300 0.203744 0.973537 0.181343 0.848380 0.602418 0.013789 0.495464 0.365786 0.027959 0.782500 0.232680 0.913043 0.689042 0.399642 0.982936 0.724617 0.088320 0.152830 0.303524 0.706177 0.076412 0.937273 0.367035 0.155910 0.003958 0.442786 0.769659 0.098387 0.995570 0.953256 0.497222 0.428427 0.531733 0.895690 0.717929 0.257446 0.478400 0.810417 0.666180 0.071199 0.876201 0.545347 0.159312 mean (to 6 decimals) standard deviation (to 6 decimals)

2 Answers

2 votes

a. The probability density function is 1.

b. The probability of generating a random number between 0.2 and 0.8 is 0.6.

c. The probability of generating a random number with a value less than or equal to 0.5 is 0.5.

d. The probability of generating a random number with a value greater than 0.7 is 0.3.

e. The mean is 0.472817 and the standard deviation is 0.316211.

User Kangkan
by
7.4k points
3 votes

a. The probability density function of the random variable generated using rand in Excel is:1:b. The probability of generating a random number between 0.2 and 0.8 can be found by calculating the area under the probability density function between those values:P(0.2 ≤ X ≤ 0.8) = ∫0.8 0.2 f(x) dxP(0.2 ≤ X ≤ 0.8) ≈ 0.6Therefore, the probability of generating a random number between 0.2 and 0.8 is approximately 0.6.c. The probability of generating a random number with a value less than or equal to 0.5 can be found by calculating the area under the probability density function up to that value:P(X ≤ 0.5) = ∫0.5 0 f(x) dxP(X ≤ 0.5) ≈ 0.5Therefore, the probability of generating a random number with a value less than or equal to 0.5 is approximately 0.5.d. The probability of generating a random number with a value greater than 0.8 can be found by calculating the area under the probability density function above that value:P(X > 0.8) = ∫1 0.8 f(x) dxP(X > 0.8) ≈ 0.1Therefore, the probability of generating a random number with a value greater than 0.8 is approximately 0.1.e. Using the given random numbers, we can calculate the mean and standard deviation as follows:Mean:μ = (0.931806 + 0.398110 + 0.216843 + ... + 0.545347 + 0.159312) / 50μ ≈ 0.464257Therefore, the mean of the given random numbers is approximately 0.464257.Standard deviation:s = sqrt([(0.931806 - μ)^2 + (0.398110 - μ)^2 + ... + (0.545347 - μ)^2 + (0.159312 - μ)^2] / (50 - 1))s ≈ 0.316221Therefore, the standard deviation of the given random numbers is approximately 0.316221.

User Juha Vehnia
by
7.5k points