Answer:
Let’s start by defining the variables:
Let x be the number of rings manufactured per day.
Let y be the number of chains manufactured per day.
The total number of rings and chains manufactured per day is at most 24. Therefore, we have:
x + y ≤ 24
It takes 1 hour to make a ring and 30 minutes to make a chain. Therefore, we have:
1x + 0.5y ≤ 16
The profit on each ring is Rs. 300 and that on each chain is Rs. 190. Therefore, the total profit can be calculated as:
Total Profit = 300x + 190y
We want to maximize the total profit. This can be done by solving the above equations using linear programming.
The solution to this problem is x = 12 and y = 12. Therefore, the firm should manufacture 12 rings and 12 chains per day to earn the maximum profit