Answer: 73 degrees
=======================================================
Step-by-step explanation:
We're given that segment AC bisects angle BAD.
This means the angle has been split into two equal parts.
Angle CAD = angle BAC = 30
So,
angle BAD = (angleCAD)+(angleBAC) = 30+30 = 60 degrees
Let's find angle ABD. I'll use the fact that the three interior angles of a triangle always add to 180. This idea will be used a few times in this solution.
(angeBDA)+(angleBAD)+(angleABD) = 180
(34)+(60)+(angleABD) = 180
94+angleABD = 180
angleABD = 180-94
angleABD = 86
-----------------------------
We're also given that segment BE bisects angle ABD, which means:
angleABE = angleEBD = 86/2 = 43
We'll use angle ABE and angle BAD to determine angle AEB.
(angeABE)+(angleBAD)+(angleAEB) = 180
(43)+(60)+(angleAEB) = 180
103+(angleAEB) = 180
angleAEB = 180-103
angleAEB = 77
This is the same as angle AEF.
-----------------------------
Now focus your attention on triangle EFA.
(angeAEF)+(angleFAE)+(angleEFA) = 180
(77)+(30)+(angleEFA) = 180
107+(angleEFA) = 180
angleEFA = 180-107
angleEFA = 73
Notice how angle EFA and angle BFC are vertical angles. Therefore, they are congruent and we can say angle BFC = 73