Answer:
Absolute value equations can have three possible cases based on the value within the absolute value brackets:
One solution: If the value within the absolute value brackets equals zero, there is only one solution. For example, |x| = 0 has the solution x = 0.
Two solutions: If the value within the absolute value brackets is positive, there are two solutions: one positive and one negative. For example, |x| = 3 has two solutions: x = 3 and x = -3.
No solutions: If the value within the absolute value brackets is negative, there are no solutions. For example, |x| = -2 has no solution because the absolute value of any real number is non-negative.
The differences in the number of solutions depend on the nature of the equation and the value within the absolute value brackets. If the value within the absolute value brackets equals zero, there is only one solution; if it is positive, there are two solutions; and if it is negative, there are no solutions.
For example, consider the absolute value equation |x - 5| = 7. If we subtract 5 from both sides, we get |x - 5| - 5 = 7 - 5, which simplifies to |x - 5| = 2.
Since the value within the absolute value brackets is positive, we know that there are two solutions. We can solve for both solutions by setting x - 5 equal to 2 and -2:
x - 5 = 2 => x = 7 x - 5 = -2 => x = 3
Therefore, the solutions to the absolute value equation |x - 5| = 7 are x = 3 and x = 7.
So to summarize, the number of solutions for an absolute value equation depends on the value within the absolute value brackets and can be one, two or zero, depending on the nature of the equation.