Answer:
Step-by-step explanation:
The moment of inertia of an object is a property that describes its resistance to rotational motion.
It is determined solely by the mass distribution of the object and the geometry of its shape, and it does not depend on the angular velocity of the object.
This can be seen from the formula for the moment of inertia, which is given by:I = ∫ r^2 dmwhere I is the moment of inertia, r is the distance from the axis of rotation to the mass element dm, and the integral is taken over the entire mass distribution of the object.
The moment of inertia depends only on the mass distribution of the object and how that mass is distributed around the axis of rotation.
This means that even if the object is rotating at different speeds or in different directions, its moment of inertia will remain the same, as long as the mass distribution is unchanged.