5
We know that there are 28 students in total, so:
G + H + J + K = 28
We also know the following probabilities:
P(G) = 7/28
P(G or H) = 5/14
The probability of selecting a student whose last name begins with G or H can be expressed as:
P(G or H) = P(G) + P(H) - P(G and H)
Since the events "selecting a student whose last name begins with G" and "selecting a student whose last name begins with H" are mutually exclusive (a student cannot have a last name that begins with both G and H), P(G and H) = 0. Therefore, we have:
5/14 = 7/28 + P(H)
Simplifying the equation, we get:
P(H) = 5/14 - 7/28 = 5/28
So the probability of selecting a student whose last name begins with H is 5/28. To find the number of students whose last name begins with H, we can multiply this probability by the total number of students:
H = P(H) x 28 = 5/28 x 28 = 5
Therefore, there are 5 students whose last name begins with H.
*IG: whis.sama_ent*