75.8k views
3 votes
Find an angle theta that makes the statement true use cofunction identity

cot(5theta - 32 degree)=tan(theta + 26 degrees)

User Akari
by
8.6k points

1 Answer

3 votes

Answer: Using the cofunction identity for tangent and cotangent:

cot(θ) = 1/tan(θ)

We can rewrite the given equation as:

cot(5θ - 32°) = 1/tan(θ + 26°)

Next, using the identity for the tangent of the sum of two angles:

tan(a + b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))

We can rewrite the right side of the equation as:

1/tan(θ + 26°) = tan(90° - (θ + 26°)) = tan(64° - θ)

Substituting this back into the original equation:

cot(5θ - 32°) = tan(64° - θ)

Using the identity for the cotangent and tangent of the difference of two angles:

cot(a - b) = (cot(a)cot(b) - 1)/(cot(b) - cot(a))

tan(a - b) = (tan(a) - tan(b))/(1 + tan(a)tan(b))

We can rewrite the equation as:

(cot(5θ)cot(32°) - 1)/(cot(32°) - cot(5θ)) = (tan(64°)tan(θ) - tan(θ))/(1 + tan(64°)tan(θ))

Simplifying both sides:

(cot(5θ)cot(32°) - 1)/(cot(32°) - cot(5θ)) = (sin(64°)sin(θ))/(cos(64°)cos(θ) + sin(64°)sin(θ))

Cross-multiplying and simplifying:

cos(64°)cos(θ)cot(5θ) - sin(64°)sin(θ)cot(5θ) = -sin(64°)sin(θ)

cos(64°)cos(θ)cot(5θ) = sin(64°)sin(θ)(cot(5θ) + 1)

cos(64°)cos(θ)cot(5θ) = sin(64°)sin(θ)csc(5θ)

cos(64°)cos(θ) = sin(64°)sin(θ)sin(5θ)/cos(5θ)

cos(64°)cos(θ)cos(5θ) = sin(64°)sin(θ)sin(5θ)

Using the identity for the cosine of the sum of two angles:

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

We can rewrite the equation as:

cos(64° + θ - 5θ) = 0

cos(64° - 4θ) = 0

64° - 4θ = 90° + k(180°) or 64° - 4θ = 270° + k(180°) where k is an integer

Solving for θ:

64° - 4θ = 90° + k(180°)

-4θ = 26° + k(180°)

θ = -(26°/4) - (k/4)(180°)

θ = -6.5° - 45°k

or

64° - 4θ = 270° + k(180°)

-4θ = 206° + k(180°)

θ = -(206°/4) - (k/4)(180°)

θ = -51.5° - 45°k

Therefore, there are two sets of solutions for θ, given by:

θ = -6.5

Explanation:

User Liviu
by
8.5k points