Answer:
= √3/2
Explanation:
We can use the sum identity for the sine of the sum of two angles to simplify the expression:
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
In this case, let a = 10° and b = 50°. Then we have:
sin(10° + 50°) = sin(10°) cos(50°) + cos(10°) sin(50°)
The value of sin(10° + 50°) can be calculated using the sum-to-product identity for the sine function:
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
sin(10° + 50°) = sin(10°) cos(50°) + cos(10°) sin(50°)
sin(60°) = sin(10°) cos(50°) + cos(10°) sin(50°)
sqrt(3)/2 = sin(10°) cos(50°) + cos(10°) sin(50°)
Therefore, the exact value of the expression is:
sin 10° cos 50° + cos 10° sin 50° = sqrt(3)/2
We can write it as:
sin 10° cos 50° + cos 10° sin 50° = √3/2
So, the answer is √3/2.