120k views
0 votes
The volume of a cone is 72 pie, the height is 6cm, what is the radius of the base of the cone

User KingBob
by
8.8k points

2 Answers

2 votes

Answer:

r≈3.39

Explanation:

I'm not quite sure but it's the best I can do.

User Amberlamps
by
7.7k points
2 votes

Answer:

radius of base = 6 cm

Explanation:

In order to calculate the radius of the base of a cone given its volume and height, we have to use the formula for the volume of a cone:


\boxed{\mathrm{V = (1)/(3) \pi r^2h}},

where:

• V ⇒ volume of the cone

• r ⇒ radius of the base of the cone

• h ⇒ height of the cone

The question gives us the value of the volume of the cone (72π cm³) as well as its height (6 cm). By substituting these values into the equation above, we can solve for r to get the radius of the base of the cone:


\mathrm{V = (1)/(3) \pi r^2h}


72 \pi = (1)/(3) * \pi * r^2 * 6


r^2 = (72 \pi)/(2 \pi)


r = \sqrt{(72 \pi)/(2 \pi)}


r = √(36)

⇒ r = 6 cm

Therefore, the radius of the base of the cone is 6 cm.

User Udi Meiri
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.