Answer:
6970 N
Step-by-step explanation:
To calculate the average force exerted on the ball, we can use the impulse-momentum theorem, which states that the impulse on an object is equal to its change in momentum. In equation form:
Impulse = Δp
where Impulse is the force applied over a given time, and Δp is the change in momentum of the object.
We can calculate the momentum of the ball before the hit as:
p1 = m * v1
where m is the mass of the ball and v1 is its initial velocity (which we assume to be zero). Substituting the given values, we get:
p1 = (0.85 kg) * 0 m/s = 0 kg m/s
The momentum of the ball after the hit is:
p2 = m * v2
where v2 is the final velocity of the ball (82 m/s). Substituting the given values, we get:
p2 = (0.85 kg) * 82 m/s = 69.7 kg m/s
The change in momentum (Δp) is therefore:
Δp = p2 - p1 = 69.7 kg m/s - 0 kg m/s = 69.7 kg m/s
The impulse on the ball is equal to the change in momentum, so we have:
Impulse = Δp = 69.7 kg m/s
Finally, we can calculate the average force exerted on the ball using the formula:
Impulse = Force * time
Substituting the given values, we get:
69.7 kg m/s = Force * 0.01 s
Solving for Force, we get:
Force = 6970 N
Therefore, the average force exerted on the ball by the bat is 6970 Newtons.