To create a 95% confidence interval for the proportion of all U.S. adults living with chronic conditions, we can use the following formula:
CI = p ± zsqrt(pq/n)
where:
p is the sample proportion (0.453)
q is the complement of p (1 - p = 0.547)
z is the z-score associated with a 95% confidence level (1.96)
n is the sample size (unknown)
We need to find the sample size (n) in order to calculate the confidence interval. We can do this by using the margin of error formula:
ME = zsqrt(pq/n)
where ME is the margin of error (0.035)
Solving for n, we get:
n = (z^2 * p * q) / ME^2 = (1.96^2 * 0.453 * 0.547) / 0.035^2 = 580.04
Rounding up to the nearest whole number, the sample size is 581.
Now we can substitute the values into the confidence interval formula:
CI = 0.453 ± 1.96sqrt(0.4530.547/581)
CI = 0.453 ± 0.035
The 95% confidence interval for the proportion of all U.S. adults living with chronic conditions is:
CI = (0.418, 0.488)
So we can say with 95% confidence that the true proportion of all U.S. adults living with chronic conditions is between 0.418 and 0.488.